Source code for cortex.polyutils.surface

# -*- coding: utf-8 -*-

from collections import OrderedDict

import numpy as np
import numexpr as ne
from scipy.spatial import distance
from scipy import sparse
import scipy.sparse.linalg

from . import exact_geodesic
from . import subsurface
from .misc import _memo


[docs]class Surface(exact_geodesic.ExactGeodesicMixin, subsurface.SubsurfaceMixin): """Represents a single cortical hemisphere surface. Can be the white matter surface, pial surface, fiducial (mid-cortical) surface, inflated surface, flattened surface, etc. Implements some useful functions for dealing with functions across surfaces. Parameters ---------- pts : 2D ndarray, shape (total_verts, 3) Location of each vertex in space (mm). Order is x, y, z. polys : 2D ndarray, shape (total_polys, 3) Indices of the vertices in each triangle in the surface. """
[docs] def __init__(self, pts, polys): self.pts = pts.astype(np.double) self.polys = polys self._cache = dict() self._rlfac_solvers = dict() self._nLC_solvers = dict()
@property @_memo def ppts(self): """3D matrix of points in each face: n faces x 3 points per face x 3 coords per point. """ return self.pts[self.polys] @property @_memo def connected(self): """Sparse matrix of vertex-face associations. """ npt = len(self.pts) npoly = len(self.polys) return sparse.coo_matrix((np.ones((3*npoly,)), # data (np.hstack(self.polys.T), # row np.tile(range(npoly),(1,3)).squeeze())), # col (npt, npoly)).tocsr() # size @property @_memo def adj(self): """Sparse vertex adjacency matrix. """ npt = len(self.pts) npoly = len(self.polys) adj1 = sparse.coo_matrix((np.ones((npoly,)), (self.polys[:,0], self.polys[:,1])), (npt,npt)) adj2 = sparse.coo_matrix((np.ones((npoly,)), (self.polys[:,0], self.polys[:,2])), (npt,npt)) adj3 = sparse.coo_matrix((np.ones((npoly,)), (self.polys[:,1], self.polys[:,2])), (npt,npt)) alladj = (adj1 + adj2 + adj3).tocsr() return alladj + alladj.T @property @_memo def face_normals(self): """Normal vector for each face. """ # Compute normal vector direction nnfnorms = np.cross(self.ppts[:,1] - self.ppts[:,0], self.ppts[:,2] - self.ppts[:,0]) # Normalize to norm 1 nfnorms = nnfnorms / np.sqrt((nnfnorms**2).sum(1))[:,np.newaxis] # Ensure that there are no nans (shouldn't be a problem with well-formed surfaces) return np.nan_to_num(nfnorms) @property @_memo def vertex_normals(self): """Normal vector for each vertex (average of normals for neighboring faces). """ # Average adjacent face normals nnvnorms = np.nan_to_num(self.connected.dot(self.face_normals) / self.connected.sum(1)).A # Normalize to norm 1 return nnvnorms / np.sqrt((nnvnorms**2).sum(1))[:,np.newaxis] @property @_memo def face_areas(self): """Area of each face. """ # Compute normal vector (length is face area) nnfnorms = np.cross(self.ppts[:,1] - self.ppts[:,0], self.ppts[:,2] - self.ppts[:,0]) # Compute vector length return np.sqrt((nnfnorms**2).sum(-1)) / 2 @property @_memo def cotangent_weights(self): """Cotangent of angle opposite each vertex in each face. """ ppts = self.ppts cots1 = ((ppts[:,1]-ppts[:,0]) * (ppts[:,2]-ppts[:,0])).sum(1) / np.sqrt((np.cross(ppts[:,1]-ppts[:,0], ppts[:,2]-ppts[:,0])**2).sum(1)) cots2 = ((ppts[:,2]-ppts[:,1]) * (ppts[:,0]-ppts[:,1])).sum(1) / np.sqrt((np.cross(ppts[:,2]-ppts[:,1], ppts[:,0]-ppts[:,1])**2).sum(1)) cots3 = ((ppts[:,0]-ppts[:,2]) * (ppts[:,1]-ppts[:,2])).sum(1) / np.sqrt((np.cross(ppts[:,0]-ppts[:,2], ppts[:,1]-ppts[:,2])**2).sum(1)) # Then we have to sanitize everything.. cots = np.vstack([cots1, cots2, cots3]) cots[np.isinf(cots)] = 0 cots[np.isnan(cots)] = 0 return cots @property @_memo def laplace_operator(self): """Laplace-Beltrami operator for this surface. A sparse adjacency matrix with edge weights determined by the cotangents of the angles opposite each edge. Returns a 4-tuple (B,D,W,V) where D is the 'lumped mass matrix', W is the weighted adjacency matrix, and V is a diagonal matrix that normalizes the adjacencies. The 'stiffness matrix', A, can be computed as V - W. The full LB operator can be computed as D^{-1} (V - W). B is the finite element method (FEM) 'mass matrix', which replaces D in FEM analyses. See 'Discrete Laplace-Beltrami operators for shape analysis and segmentation' by Reuter et al., 2009 for details. """ ## Lumped mass matrix D = self.connected.dot(self.face_areas) / 3.0 ## Stiffness matrix npt = len(self.pts) cots1, cots2, cots3 = self.cotangent_weights # W is weighted adjacency matrix W1 = sparse.coo_matrix((cots1, (self.polys[:,1], self.polys[:,2])), (npt, npt)) W2 = sparse.coo_matrix((cots2, (self.polys[:,2], self.polys[:,0])), (npt, npt)) W3 = sparse.coo_matrix((cots3, (self.polys[:,0], self.polys[:,1])), (npt, npt)) W = (W1 + W1.T + W2 + W2.T + W3 + W3.T).tocsr() / 2.0 # V is sum of each col V = sparse.dia_matrix((np.array(W.sum(0)).ravel(),[0]), (npt,npt)) # A is stiffness matrix #A = W - V # negative operator -- more useful in practice # For FEM: Be1 = sparse.coo_matrix((self.face_areas, (self.polys[:,1], self.polys[:,2])), (npt, npt)) Be2 = sparse.coo_matrix((self.face_areas, (self.polys[:,2], self.polys[:,0])), (npt, npt)) Be3 = sparse.coo_matrix((self.face_areas, (self.polys[:,0], self.polys[:,1])), (npt, npt)) Bd = self.connected.dot(self.face_areas) / 6 dBd = scipy.sparse.dia_matrix((Bd,[0]), (len(D),len(D))) B = (Be1 + Be1.T + Be2 + Be2.T + Be3 + Be3.T)/12 + dBd return B, D, W, V
[docs] def mean_curvature(self): """Compute mean curvature of this surface using the Laplace-Beltrami operator. Curvature is computed at each vertex. It's probably pretty noisy, and should be smoothed using smooth(). Negative values of mean curvature mean that the surface is folded inward (as in a sulcus), positive values of curvature mean that the surface is folded outward (as on a gyrus). Returns ------- curv : 1D ndarray, shape (total_verts,) The mean curvature at each vertex. """ B,D,W,V = self.laplace_operator npt = len(D) Dinv = sparse.dia_matrix((D**-1,[0]), (npt,npt)).tocsr() # construct Dinv L = Dinv.dot((V-W)) curv = (L.dot(self.pts) * self.vertex_normals).sum(1) return curv
[docs] def smooth(self, scalars, factor=1.0, iterations=1): """Smooth vertex-wise function given by `scalars` across the surface using mean curvature flow method (see http://brickisland.net/cs177fa12/?p=302). Amount of smoothing is controlled by `factor`. Parameters ---------- scalars : 1D ndarray, shape (total_verts,) A scalar-valued function across the cortex, such as the curvature supplied by mean_curvature. factor : float, optional Amount of smoothing to perform, larger values smooth more. iterations : int, optional Number of times to repeat smoothing, larger values smooths more. Returns ------- smscalars : 1D ndarray, shape (total_verts,) Smoothed scalar values. """ if factor == 0.0: return scalars B,D,W,V = self.laplace_operator npt = len(D) lfac = sparse.dia_matrix((D,[0]), (npt,npt)) - factor * (W-V) goodrows = np.nonzero(~np.array(lfac.sum(0) == 0).ravel())[0] lfac_solver = sparse.linalg.dsolve.factorized(lfac[goodrows][:,goodrows]) to_smooth = scalars.copy() for _ in range(iterations): from_smooth = lfac_solver((D * to_smooth)[goodrows]) to_smooth[goodrows] = from_smooth smscalars = np.zeros(scalars.shape) smscalars[goodrows] = from_smooth return smscalars
@property @_memo def avg_edge_length(self): """Average length of all edges in the surface. """ adj = self.adj tadj = sparse.triu(adj, 1) # only entries above main diagonal, in coo format edgelens = np.sqrt(((self.pts[tadj.row] - self.pts[tadj.col])**2).sum(1)) return edgelens.mean()
[docs] def surface_gradient(self, scalars, at_verts=True): """Gradient of a function with values `scalars` at each vertex on the surface. If `at_verts`, returns values at each vertex. Otherwise, returns values at each face. Parameters ---------- scalars : 1D ndarray, shape (total_verts,) A scalar-valued function across the cortex. at_verts : bool, optional If True (default), values will be returned for each vertex. Otherwise, values will be retruned for each face. Returns ------- gradu : 2D ndarray, shape (total_verts,3) or (total_polys,3) Contains the x-, y-, and z-axis gradients of the given `scalars` at either each vertex (if `at_verts` is True) or each face. """ pu = scalars[self.polys] fe12, fe23, fe31 = [f.T for f in self._facenorm_cross_edge] pu1, pu2, pu3 = pu.T fa = self.face_areas # numexpr is much faster than doing this using numpy! #gradu = ((fe12.T * pu[:,2] + # fe23.T * pu[:,0] + # fe31.T * pu[:,1]) / (2 * self.face_areas)).T gradu = np.nan_to_num(ne.evaluate("(fe12 * pu3 + fe23 * pu1 + fe31 * pu2) / (2 * fa)").T) if at_verts: return (self.connected.dot(gradu).T / self.connected.sum(1).A.squeeze()).T return gradu
[docs] def create_biharmonic_solver(self, boundary_verts, clip_D=0.1): r"""Set up biharmonic equation with Dirichlet boundary conditions on the cortical mesh and precompute Cholesky factorization for solving it. The vertices listed in `boundary_verts` are considered part of the boundary, and will not be included in the factorization. To facilitate Cholesky decomposition (which requires a symmetric matrix), the squared Laplace-Beltrami operator is separated into left-hand-side (L2) and right-hand-side (Dinv) parts. If we write the L-B operator as the product of the stiffness matrix (V-W) and the inverse mass matrix (Dinv), the biharmonic problem is as follows (with `u` denoting non-boundary vertices) .. math:: :nowrap: \begin{eqnarray} L^2_{u} \phi &=& -\rho_{u} \\ \left[ D^{-1} (V-W) D^{-1} (V-W) \right]_{u} \phi &=& -\rho_{u} \\ \left[ (V-W) D^{-1} (V-W) \right]_{u} \phi &=& -\left[D \rho\right]_{u} \end{eqnarray} Parameters ---------- boundary_verts : list or ndarray of length V Indices of vertices that will be part of the Dirichlet boundary. Returns ------- lhs : sparse matrix Left side of biharmonic problem, (V-W) D^{-1} (V-W) rhs : sparse matrix, dia Right side of biharmonic problem, D Dinv : sparse matrix, dia Inverse mass matrix, D^{-1} lhsfac : cholesky Factor object Factorized left side, solves biharmonic problem notboundary : ndarray, int Indices of non-boundary vertices """ try: from scikits.sparse.cholmod import cholesky factorize = lambda x: cholesky(x).solve_A except ImportError: factorize = sparse.linalg.dsolve.factorized B, D, W, V = self.laplace_operator npt = len(D) g = np.nonzero(D > 0)[0] # Find vertices with non-zero mass #g = np.nonzero((L.sum(0) != 0).A.ravel())[0] # Find vertices with non-zero mass notboundary = np.setdiff1d(np.arange(npt)[g], boundary_verts) # find non-boundary verts D = np.clip(D, clip_D, D.max()) Dinv = sparse.dia_matrix((D**-1,[0]), (npt,npt)).tocsr() # construct Dinv L = Dinv.dot((V-W)) # construct Laplace-Beltrami operator lhs = (V-W).dot(L) # construct left side, almost squared L-B operator #lhsfac = cholesky(lhs[notboundary][:,notboundary]) # factorize lhsfac = factorize(lhs[notboundary][:,notboundary]) # factorize return lhs, D, Dinv, lhsfac, notboundary
def _create_interp(self, verts, bhsolver=None): """Creates interpolator that will interpolate values at the given `verts` using biharmonic interpolation. Parameters ---------- verts : 1D array-like of ints Indices of vertices that will serve as knot points for interpolation. bhsolver : (lhs, rhs, Dinv, lhsfac, notboundary), optional A 5-tuple representing a biharmonic equation solver. This structure is created by create_biharmonic_solver. Returns ------- _interp : function Function that will interpolate a given set of values across the surface. The values can be 1D or 2D (number of dimensions by len `verts`). Any number of dimensions can be interpolated simultaneously. """ if bhsolver is None: lhs, D, Dinv, lhsfac, notb = self.create_biharmonic_solver(verts) else: lhs, D, Dinv, lhsfac, notb = bhsolver npt = len(D) def _interp(vals): """Interpolate function with values `vals` at the knot points.""" v2 = np.atleast_2d(vals) nd,nv = v2.shape ij = np.zeros((2,nv*nd)) ij[0] = np.array(verts)[np.repeat(np.arange(nv), nd)] ij[1] = np.tile(np.arange(nd), nv) r = sparse.csr_matrix((vals.T.ravel(), ij), shape=(npt,nd)) vr = lhs.dot(r) #phi = lhsfac.solve_A(-vr.todense()[notb]) # 29.9ms #phi = lhsfac.solve_A(-vr[notb]).todense() # 29.3ms #phi = lhsfac.solve_A(-vr[notb].todense()) # 28.2ms phi = lhsfac(-vr[notb].todense()) tphi = np.zeros((npt,nd)) tphi[notb] = phi tphi[verts] = v2.T return tphi return _interp
[docs] def interp(self, verts, vals): """Interpolates a function between N knot points `verts` with the values `vals`. `vals` can be a D x N array to interpolate multiple functions with the same knot points. Using this function directly is unnecessarily expensive if you want to interpolate many different values between the same knot points. Instead, you should directly create an interpolator function using _create_interp, and then call that function. In fact, that's exactly what this function does. See create_biharmonic_solver for math details. Parameters ---------- verts : 1D array-like of ints Indices of vertices that will serve as knot points for interpolation. vals : 2D ndarray, shape (dimensions, len(verts)) Values at the knot points. Can be multidimensional. Returns ------- tphi : 2D ndarray, shape (total_verts, dimensions) Interpolated value at every vertex on the surface. """ return self._create_interp(verts)(vals)
@property @_memo def _facenorm_cross_edge(self): ppts = self.ppts fnorms = self.face_normals fe12 = np.cross(fnorms, ppts[:,1] - ppts[:,0]) fe23 = np.cross(fnorms, ppts[:,2] - ppts[:,1]) fe31 = np.cross(fnorms, ppts[:,0] - ppts[:,2]) return fe12, fe23, fe31
[docs] def approx_geodesic_distance(self, verts, m=0.1): """Computes approximate geodesic distance (in mm) from each vertex in the surface to any vertex in the collection `verts`. This approximation is computed using Varadhan's formula for geodesic distance based on the heat kernel. This is very fast (quite a bit faster than `geodesic_distance`) but very inaccurate. Use with care. In short, we let heat diffuse across the surface from sources at `verts`, and then look at the resulting heat levels in every other vertex to approximate how far they are from the sources. In theory, this should be very accurate as the duration of heat diffusion goes to zero. In practice, short duration leads to numerical instability and error. Parameters ---------- verts : 1D array-like of ints Set of vertices to compute distance from. This function returns the shortest distance to any of these vertices from every vertex in the surface. m : float, optional Scalar on the duration of heat propagation. Default 0.1. Returns ------- 1D ndarray, shape (total_verts,) Approximate geodesic distance (in mm) from each vertex in the surface to the closest vertex in `verts`. """ npt = len(self.pts) t = m * self.avg_edge_length ** 2 # time of heat evolution if m not in self._rlfac_solvers: B, D, W, V = self.laplace_operator nLC = W - V # negative laplace matrix spD = sparse.dia_matrix((D,[0]), (npt,npt)).tocsr() # lumped mass matrix lfac = spD - t * nLC # backward Euler matrix # Exclude rows with zero weight (these break the sparse LU) goodrows = np.nonzero(~np.array(lfac.sum(0) == 0).ravel())[0] self._goodrows = goodrows self._rlfac_solvers[m] = sparse.linalg.dsolve.factorized(lfac[goodrows][:,goodrows]) # Solve system to get u, the heat values u0 = np.zeros((npt,)) # initial heat values u0[verts] = 1.0 goodu = self._rlfac_solvers[m](u0[self._goodrows]) u = np.zeros((npt,)) u[self._goodrows] = goodu return -4 * t * np.log(u)
[docs] def geodesic_distance(self, verts, m=1.0, fem=False): """Minimum mesh geodesic distance (in mm) from each vertex in surface to any vertex in the collection `verts`. Geodesic distance is estimated using heat-based method (see 'Geodesics in Heat', Crane et al, 2012). Diffusion of heat along the mesh is simulated and then used to infer geodesic distance. The duration of the simulation is controlled by the parameter `m`. Larger values of `m` will smooth & regularize the distance computation. Smaller values of `m` will roughen and will usually increase error in the distance computation. The default value of 1.0 is probably pretty good. This function caches some data (sparse LU factorizations of the laplace-beltrami operator and the weighted adjacency matrix), so it will be much faster on subsequent runs. The time taken by this function is independent of the number of vertices in verts. Parameters ---------- verts : 1D array-like of ints Set of vertices to compute distance from. This function returns the shortest distance to any of these vertices from every vertex in the surface. m : float, optional Reverse Euler step length. The optimal value is likely between 0.5 and 1.5. Default is 1.0, which should be fine for most cases. fem : bool, optional Whether to use Finite Element Method lumped mass matrix. Wasn't used in Crane 2012 paper. Doesn't seem to help any. Returns ------- 1D ndarray, shape (total_verts,) Geodesic distance (in mm) from each vertex in the surface to the closest vertex in `verts`. """ npt = len(self.pts) if m not in self._rlfac_solvers or m not in self._nLC_solvers: B, D, W, V = self.laplace_operator nLC = W - V # negative laplace matrix if not fem: spD = sparse.dia_matrix((D,[0]), (npt,npt)).tocsr() # lumped mass matrix else: spD = B t = m * self.avg_edge_length ** 2 # time of heat evolution lfac = spD - t * nLC # backward Euler matrix # Exclude rows with zero weight (these break the sparse LU) goodrows = np.nonzero(~np.array(lfac.sum(0) == 0).ravel())[0] self._goodrows = goodrows self._rlfac_solvers[m] = sparse.linalg.dsolve.factorized(lfac[goodrows][:,goodrows]) self._nLC_solvers[m] = sparse.linalg.dsolve.factorized(nLC[goodrows][:,goodrows]) # I. "Integrate the heat flow ̇u = ∆u for some fixed time t" # --------------------------------------------------------- # Solve system to get u, the heat values u0 = np.zeros((npt,)) # initial heat values u0[verts] = 1.0 goodu = self._rlfac_solvers[m](u0[self._goodrows]) u = np.zeros((npt,)) u[self._goodrows] = goodu # II. "Evaluate the vector field X = − ∇u / |∇u|" # ----------------------------------------------- # Compute grad u at each face gradu = self.surface_gradient(u, at_verts=False) # Compute X (normalized grad u) #X = np.nan_to_num((-gradu.T / np.sqrt((gradu**2).sum(1))).T) graduT = gradu.T gusum = ne.evaluate("sum(gradu ** 2, 1)") X = np.nan_to_num(ne.evaluate("-graduT / sqrt(gusum)").T) # III. "Solve the Poisson equation ∆φ = ∇·X" # ------------------------------------------ # Compute integrated divergence of X at each vertex #x1 = x2 = x3 = np.zeros((X.shape[0],)) c32, c13, c21 = self._cot_edge x1 = 0.5 * (c32 * X).sum(1) x2 = 0.5 * (c13 * X).sum(1) x3 = 0.5 * (c21 * X).sum(1) conn1, conn2, conn3 = self._polyconn divx = conn1.dot(x1) + conn2.dot(x2) + conn3.dot(x3) # Compute phi (distance) goodphi = self._nLC_solvers[m](divx[self._goodrows]) phi = np.zeros((npt,)) phi[self._goodrows] = goodphi - goodphi.min() # Ensure that distance is zero for selected verts phi[verts] = 0.0 return phi
[docs] def geodesic_path(self, a, b, max_len=1000, d=None, **kwargs): """Finds the shortest path between two points `a` and `b`. This shortest path is based on geodesic distances across the surface. The path starts at point `a` and selects the neighbor of `a` in the graph that is closest to `b`. This is done iteratively with the last vertex in the path until the last point in the path is `b`. Other Parameters in kwargs are passed to the geodesic_distance function to alter how geodesic distances are actually measured Parameters ---------- a : int Vertex that is the start of the path b : int Vertex that is the end of the path d : array array of geodesic distances, will be computed if not provided Other Parameters ---------------- max_len : int, optional, default=1000 Maximum path length before the function quits. Sometimes it can get stuck in loops, causing infinite paths. m : float, optional Reverse Euler step length. The optimal value is likely between 0.5 and 1.5. Default is 1.0, which should be fine for most cases. fem : bool, optional Whether to use Finite Element Method lumped mass matrix. Wasn't used in Crane 2012 paper. Doesn't seem to help any. Returns ------- path : list List of the vertices in the path from a to b """ path = [a] if d is None: d = self.geodesic_distance([b], **kwargs) while path[-1] != b: n = np.array([v for v in self.graph.neighbors(path[-1])]) path.append(n[d[n].argmin()]) if len(path) > max_len: return path return path
@property @_memo def _cot_edge(self): ppts = self.ppts cots1, cots2, cots3 = self.cotangent_weights c3 = cots3[:,np.newaxis] * (ppts[:,1] - ppts[:,0]) c2 = cots2[:,np.newaxis] * (ppts[:,0] - ppts[:,2]) c1 = cots1[:,np.newaxis] * (ppts[:,2] - ppts[:,1]) c32 = c3 - c2 c13 = c1 - c3 c21 = c2 - c1 return c32, c13, c21 @property @_memo def _polyconn(self): npt = len(self.pts) npoly = len(self.polys) o = np.ones((npoly,)) c1 = sparse.coo_matrix((o, (self.polys[:,0], range(npoly))), (npt, npoly)).tocsr() c2 = sparse.coo_matrix((o, (self.polys[:,1], range(npoly))), (npt, npoly)).tocsr() c3 = sparse.coo_matrix((o, (self.polys[:,2], range(npoly))), (npt, npoly)).tocsr() return c1, c2, c3 @property @_memo def boundary_vertices(self): """return mask of boundary vertices algorithm: for simple mesh, every edge appears in either 1 or 2 polys 1 -> border edge 2 -> non-border edge """ first = np.hstack( [ self.polys[:, 0], self.polys[:, 1], self.polys[:, 2], ] ) second = np.hstack( [ self.polys[:, 1], self.polys[:, 2], self.polys[:, 0], ] ) polygon_edges = np.vstack([first, second]) polygon_edges = np.vstack([polygon_edges.min(axis=0), polygon_edges.max(axis=0)]) sort_order = np.lexsort(polygon_edges) sorted_edges = polygon_edges[:, sort_order] duplicate_mask = (sorted_edges[:, :-1] == sorted_edges[:, 1:]).sum(axis=0) == 2 nonduplicate_mask = np.ones(sorted_edges.shape[1], dtype=bool) nonduplicate_mask[:-1][duplicate_mask] = False nonduplicate_mask[1:][duplicate_mask] = False border_mask = np.zeros(self.pts.shape[0], dtype=bool) border_mask[sorted_edges[:, nonduplicate_mask][0, :]] = True border_mask[sorted_edges[:, nonduplicate_mask][1, :]] = True return border_mask @property def iter_surfedges(self): for a, b, c in self.polys: yield a, b yield b, c yield a, c @property def iter_surfedges_weighted(self): """iterate through edges - same iteration order as self.edge_lengths - border edges will be iterated once, non-border edges will be iterated twice """ distances = self.edge_lengths n_edges = distances.size / 3 for i, (a, b, c) in enumerate(self.polys): yield a, b, distances[i] yield b, c, distances[i + n_edges] yield a, c, distances[i + 2 * n_edges] @property @_memo def graph(self): """NetworkX undirected graph representing this Surface. """ import networkx as nx graph = nx.Graph() graph.add_edges_from(self.iter_surfedges) return graph
[docs] def get_graph(self): return self.graph
@property @_memo def edge_lengths(self): """return vector of edge lengths - same iteration order as iter_surfedges_listed() - border edges will be iterated once, non-border edges will be iterated twice """ n_edges = self.polys.shape[0] edges = np.zeros((n_edges * 3, 3)) edges[:n_edges, :] = self.ppts[:, 0, :] - self.ppts[:, 1, :] edges[n_edges:(2 * n_edges), :] = self.ppts[:, 1, :] - self.ppts[:, 2, :] edges[(2 * n_edges):, :] = self.ppts[:, 2, :] - self.ppts[:, 0, :] edges **= 2 distances = edges.sum(axis=1) distances **= 0.5 return distances @property @_memo def weighted_distance_graph(self): import networkx as nx weighted_graph = nx.Graph() weighted_graph.add_weighted_edges_from(self.iter_surfedges_weighted) return weighted_graph
[docs] def extract_chunk(self, nfaces=100, seed=None, auxpts=None): '''Extract a chunk of the surface using breadth first search, for testing purposes''' node = seed if seed is None: node = np.random.randint(len(self.pts)) ptmap = dict() queue = [node] faces = set() visited = set([node]) while len(faces) < nfaces and len(queue) > 0: node = queue.pop(0) for face in self.connected[node].indices: if face not in faces: faces.add(face) for pt in self.polys[face]: if pt not in visited: visited.add(pt) queue.append(pt) pts, aux, polys = [], [], [] for face in faces: for pt in self.polys[face]: if pt not in ptmap: ptmap[pt] = len(pts) pts.append(self.pts[pt]) if auxpts is not None: aux.append(auxpts[pt]) polys.append([ptmap[p] for p in self.polys[face]]) if auxpts is not None: return np.array(pts), np.array(aux), np.array(polys) return np.array(pts), np.array(polys)
[docs] def extract_geodesic_chunk(self, origin, radius): """Extract a chunk of the surface that is within radius of the origin by geodesic distance. """ dist = self.geodesic_distance([origin]) sel = np.nonzero(dist < radius)[0] sel_pts = self.pts[sel] # create new polys with remapped indices # find polys where all 3 verts are in the selected set sel_polys_inds = np.nonzero(self.connected[sel].sum(0) == 3)[1] sel_polys_old = self.polys[sel_polys_inds] # create array to remap indices in polys to new indices keyarr = np.zeros(len(self.pts), dtype=int) keyarr[sel] = range(len(sel)) sel_polys = keyarr[sel_polys_old] return sel_pts, sel_polys
[docs] def polyhedra(self, wm): '''Iterates through the polyhedra that make up the closest volume to a certain vertex''' for p, facerow in enumerate(self.connected): faces = facerow.indices pts, polys = _ptset(), _quadset() if len(faces) > 0: poly = np.roll(self.polys[faces[0]], -np.nonzero(self.polys[faces[0]] == p)[0][0]) assert pts[wm[p]] == 0 assert pts[self.pts[p]] == 1 pts[wm[poly[[0, 1]]].mean(0)] pts[self.pts[poly[[0, 1]]].mean(0)] for face in faces: poly = np.roll(self.polys[face], -np.nonzero(self.polys[face] == p)[0][0]) a = pts[wm[poly].mean(0)] b = pts[self.pts[poly].mean(0)] c = pts[wm[poly[[0, 2]]].mean(0)] d = pts[self.pts[poly[[0, 2]]].mean(0)] e = pts[wm[poly[[0, 1]]].mean(0)] f = pts[self.pts[poly[[0, 1]]].mean(0)] polys((0, c, a, e)) polys((1, f, b, d)) polys((1, d, c, 0)) polys((1, 0, e, f)) polys((f, e, a, b)) polys((d, b, a, c)) yield pts.points, np.array(list(polys.triangles))
[docs] def patches(self, auxpts=None, n=1): def align_polys(p, polys): x, y = np.nonzero(polys == p) y = np.vstack([y, (y+1)%3, (y+2)%3]).T return polys[np.tile(x, [3, 1]).T, y] def half_edge_align(p, pts, polys): poly = align_polys(p, polys) mid = pts[poly].mean(1) left = pts[poly[:,[0,2]]].mean(1) right = pts[poly[:,[0,1]]].mean(1) s1 = np.array(np.broadcast_arrays(pts[p], mid, left)).swapaxes(0,1) s2 = np.array(np.broadcast_arrays(pts[p], mid, right)).swapaxes(0,1) return np.vstack([s1, s2]) def half_edge(p, pts, polys): poly = align_polys(p, polys) mid = pts[poly].mean(1) left = pts[poly[:,[0,2]]].mean(1) right = pts[poly[:,[0,1]]].mean(1) stack = np.vstack([mid, left, right, pts[p]]) return stack[(distance.cdist(stack, stack) == 0).sum(0) == 1] for p, facerow in enumerate(self.connected): faces = facerow.indices if len(faces) > 0: if n == 1: if auxpts is not None: pidx = np.unique(self.polys[faces]) yield np.vstack([self.pts[pidx], auxpts[pidx]]) else: yield self.pts[self.polys[faces]] elif n == 0.5: if auxpts is not None: pts = half_edge(p, self.pts, self.polys[faces]) aux = half_edge(p, auxpts, self.polys[faces]) yield np.vstack([pts, aux]) else: yield half_edge_align(p, self.pts, self.polys[faces]) else: raise ValueError else: yield None
[docs] def edge_collapse(self, p1, p2, target): raise NotImplementedError face1 = self.connected[p1] face2 = self.connected[p2]
class _ptset(object): def __init__(self): self.idx = OrderedDict() def __getitem__(self, idx): idx = tuple(idx) if idx not in self.idx: self.idx[idx] = len(self.idx) return self.idx[idx] @property def points(self): return np.array(list(self.idx.keys())) class _quadset(object): def __init__(self): self.polys = dict() def __call__(self, quad): idx = tuple(sorted(quad)) if idx in self.polys: del self.polys[idx] else: self.polys[idx] = quad @property def triangles(self): for quad in list(self.polys.values()): yield quad[:3] yield [quad[0], quad[2], quad[3]]